

Monofocal

The World of Acriva^{UD}

Premium Material

Innovative Optic Engineering

Ultra Definition

360° All Enhanced Square Edge

Wide Diopter Range and Different Haptic Platforms

Best of Both Worlds

Better Visual Quality

Advanced Vision of Aspheric Design

Real PCO Barrier

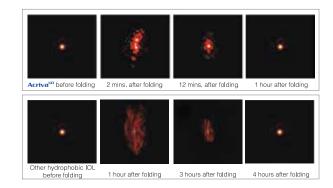
Complete Solutions

Excellent Combination

Premium Material

Best of Both Worlds

Excellent material combination of 2-Oxiethylmethacrylate and 2-Hydroxymethacrylate monomers creates hydrophobic surface behavior with the advantage of hydrophilic flexibility.



Proven Hydrophobic Surface Behavior

Acriva^{UD} has contact angle measurements similar to pure hydrophobic IOLs. An independent comparative study showed that the hydrophobic surface of Acriva^{UD} is similar to that of pure hydrophobic competitors¹.

Benefits of Hydrophobic and Hydrophilic Monomer Combination

- No glistening
- Limited PCO
- High biocompatibility
- Low inflammatory response
- No calcification
- Easy to fold and inject
- MICS capability
- Quickly unfolding in the eye

Better Flexibility

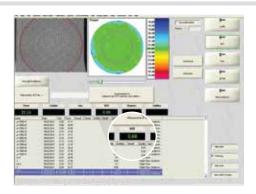
The elastic co-polymer of Acriva^{ub} has precise memory. Point Spread Function (PSF) shows that the optic recovers its initial shape within an hour, much more quickly than hydrophobic IOLs.

References

2- Data on file

-

¹⁻ Çaykara T., Contact Angle Measurements of Intra-Ocular Lenses (IOL). Republic Of Turkey Gazi University Office Of Dean Of School Of Sciences And Letters File: B.30.2.GÜN.0.10.82.00-2431 July 14, 2009.


Advanced Vision

Innovative Optic Engineering

Better Visual Quality

The MTF of every single Acriva^{UD} lens produced is checked during production to ensure that its value is above international standards. All Acriva^{UD} products demonstrate superior MTF and smooth surface topography, thanks to our innovative optic engineering.

Modular Transfer Function

MTF is a direct quantitative measurement of optic-system quality. The best result through obstacles is 0.7 at 100 lpm. International standards require the MTF results with an IOL to be above 0.43 at 100 lpm³.

VSY Biotechnology has determined its own quality control acceptance limits that are far stricter than international standards.

Ultra Definition Optic

Advanced Vision of Aspheric Design

Ultra Definition optic design corrects spherical aberrations coming from cornea. **Acriva** DOLs have a slight negative asphericity, that neutralizes part of the positive aberration of the cornea, helping the patient to maintain better depth of focus^{4,5}.

Advantage of Ultra Definition Design

- Improved contrast sensitivity under mesopic conditions
- Preserved depth of focus
- Less sensitive to decentration

Reference

- 3- International Standard ISO 11979-2:1999 Technical Corrigendum 1 ICS 11.040.70 Ref. No. ISO 11979-2:1999/Cor.1:2003(E) Published 2003-11-01
- 4- Holladay J.T., Piers PA, Korayni G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002, 18 (6):683-691.
- 5- Belluci R, Morselli S, Piers P. comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses. J Refract Surg. 2004 Jul-Aug; 20(4):297-306.

MONOFOCAL IOL

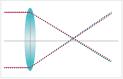
Different Platforms

360° All Enhanced Square Edge

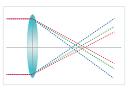
Real PCO Barrier

The innovative edge design greatly reduce PCO risk by making a geometric and mechanical barrier against cell proliferation. The edge design allows for production of much thinner lenses with the same equivalent power as competitors' IOLs.

Superior Chromatic Aberration Control


Clear Vision

The Abbe Number of Acriva^{uD} is 58, one of the highest in the IOL market. The entire Acriva^{UD} line is guaranteed to have Superior Chromatic Aberration Control.



protecting aganist PCO formation^{6, 7}.

Higher Abbe Number

Lower Abbe Numbe

Exceptional Design The Importance of Abbe Number

Chromatic aberration is a type of distortion in optical systems, caused by different wavelengths of light to have different focal points. The higher the Abbe Number, the lower the chromatic aberration⁹.

Doforonoo

360° All Enhanced Square Edge and premium material form a dual barrier against the

risk of posterior capsule opacification after implantation. Studies have shown that

square edge on posterior surface of the optic is the most important IOL-related factor

3

⁶⁻ Can I., Ceran BB., Soyugelen G., Takmaz T. Comparison of clinical outcomes with 2 small-incision diffractive multifocal intraocular lenses. Journal of Cataract & Refractive Surgery 2012 Vol 38 No1

⁷⁻ Data on file

⁹⁻ Huawei Zhao, Martin A Mainster The effect of chromatic dispersion on pseudophakic optical performance Br J Ophthalmol 2007;91:1225–1229.

UD 613

Material	25% Hydrophilic Acrylic, UV filter		
Optic Size	6.00 mm		
Optic Design	Biconvex		
Haptic Size	13.00 mm		
Haptic Design	Modified C		
Haptic Angle	0°		
Recommended Ac. A Constant	118.0		
Recommended Op. A Constant	Srk-T : 118.4 - Srk-II : 118.6		
Diopter Power Range	From 0.0D to +45.00D (0.50D increments)		
Refractive Index Wet	1.462 (589 nm)		
Recommended Injector &	Acrijet FLY 1.8 (Up to 19.5D)		
Cartridge System	Acrijet FLY 2.2 (Up to 32.0D)		

MONOFOCAL IOL 4

Blue Light Filtration

Optimum Filtration Range
Natural Chromophore
Ideal Concentration

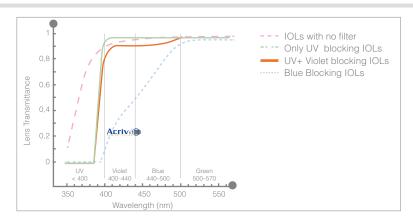
Balanced Photoprotection of UVA and Violet Spectrum

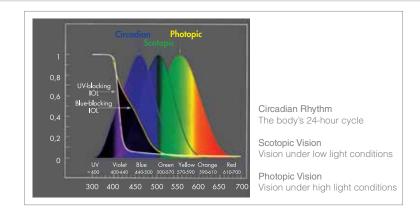
Same Transmission Properties as Natural Lens

Improved Contrast Sensitivity

MONOFOCAL IOL

Efficient Protection




Optimum Filtration Range

Balanced Photoprotection of UVA and Violet Spectrum

Acriva UD BB provides excellent photoprotection from potential damage of UVA and violet spectrum without blocking blue light. Acriva^{ub} BB ensures 95% blue light transmission at 480nm, known to be critical in controlling the circadian rhythm 8, 9, 10, 11, 12.

The chromophore used in Acriva DB material has a similar chemical structure to the chromophore naturally present in the human lens.

Importance of Blue Light

Blue light plays a crucial role in controlling the circadian rhythm and endogenous melatonin secretion. Disorganization of the circadian rhythm is more common in older adults and people with insomnia¹³, depression^{14, 15}, and dementia^{16,17}. Blue-blocking IOLs, which contain synthetic dye filter up to 500 nm causes excessive filtering of blue light.

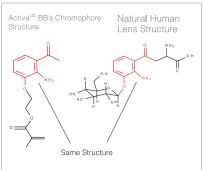
- 8- Dacey DM, Liao HW, Peterson BB, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 2005; 433; 749-54. 9- Olu X, Kumbalasini T, Carlsan SM et. al. Induction of photosensitivity by heterologus expression of melanopsin. Nature 2005; 433: 745-9

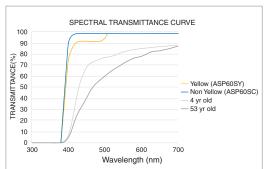
 10- Abbott A. Restless nights, listless days. Nature 2003. 425896–898.898

- 10-Abbut N. Hestess Ingins, insiess days, Nature 2005. 423698-699.699
 12- Van Gelder R N. Blue light and the circadian clock. Br J Ophthalmol 2004. 881353
 13- Haimov I, Laudon M, Zisapel N. et al Sleep disorders and melatonin rhythms in elderly people. BMJ 1994. 309167
- 14- Terman M, Terman JS. Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectr 2005. 10647–63 quiz 672.63 quiz 672.15- Jones S H. Circadian rhythms, multilevel models of emotion and bipolar disorder an initial step towards integration? Clin Psychol Rev 2001. 211193–1209.1209.

 16-Reiter R J, Tan D X, Pappolla M A. Melatonin Relieves the Neural Oxidative Burden that Contributes to Dementias. Ann N Y Acad Sci 2004. 1035179–196.196
- 17- Mainster MA. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. British Journal of Ophthalmology. 2006;90:784-792

7

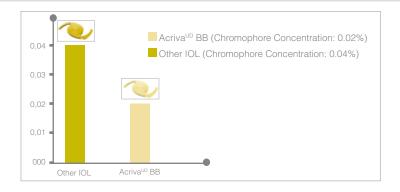

Superior Clarity



Natural Chromophore

Similar Transmission Properties to Natural Lens

Acriva^{uo} BB contains 3-hydroxykynurenine, similar to the chromophore present in the human natural lens.


Chromophore structure of Acriva^{uD} possesses the same transmission as human natural crystalline lens with a good protection of the macula against UV-A and blue light thanks to the absorption curve that mimics the human crystalline lens, preserving natural color perception and contrast sensitivity.

3

Ideal Concentration

Improved Contrast Sensitivity

Acriva^{uD} BB's chromophore concentration is 0.02%. It has a clearer color than IOLs with higher concentrations of chromophores. Low concentration of Acriva^{UD} BB doesn't influence patient color perception.

Natural chromophore and its lower concentration provide higher contrast sensitivity under mesopic conditions.

BB UDM 611

BBT UDM 611

Material	25% Hydrophilic Acrylic, UV, violet,		
	and blue filter		
Optic Size	6.00 mm		
Optic Design	Monofocal		
Haptic Size	13.00 mm		
Haptic Design	Modified C		
Haptic Angle	0°		
Recommended Ac. A Constant	118.0		
Recommended Op. A Constant	Srk-T:118.4 - Srk-II:118.6		
Diopter Power Range	From 0.00D to +45.00D (0.50D increments)		
Refractive Index Wet	1.462 (589 nm)		
Recommended Injector &	Acrijet FLY 1.8 (Up to 19.5D)		
Cartridge System	Acrijet FLY 2.2 (Up to 32.0D)		

Material	25% Hydrophilic Acrylic, UV, violet,		
	and blue filter		
Optic Size	6.00 mm		
Optic Design	Monofocal		
Haptic Size	11.00 mm		
Haptic Design	Plate Haptic		
Haptic Angle	O°		
Recommended Ac. A Constant	118.0		
Recommended Op. A Constant	Srk-T:118.7 - Srk-II:119.0		
Diopter Power Range	From 0.00D to +45.00D (0.50D increments)		
Refractive Index Wet	1.462 (589 nm)		
Recommended Injector &	Acrijet FLY 1.8 (up to 22.50 D)		
Cartridge System	Acrijet FLY 2.2 (up to 32.00 D)		

Material	25% Hydrophilic Acrylic, UV, violet,	
	and blue filter	
Optic Size	6.00 mm	
Optic Design	Monofocal Toric	
Haptic Size	11.00 mm	
Haptic Design	Plate Haptic	
Haptic Angle	0°	
Recommended Ac. A Constant	118.0	
Recommended Op. A Constant	Srk-T:118.6 - Srk-II:118.9	
Diopter Power Range	Spheric: From 0.00D to +32.00D (0.50D increments)	
	Cylindric: From +1.00D to +10.00D (0.50D increments)	
Refractive Index Wet	1.462 (589 nm)	
Recommended Injector &	Acrijet FLY 1.8 (up to 22.50 D cyl 5.00 D)	
Cartridge System	Acrijet FLY 2.2 (up to 32.00 D cyl 10.00D)	

These products may not be available in every country

